Measuring Semantic Similarity between Words Using Page Counts and Snippets
نویسندگان
چکیده
Web mining involves activities such as document clustering, community mining etc. to be performed on web. Such tasks need measuring semantic similarity between words. This helps in performing web mining activities easily in many applications. However, the accuracy of measuring semantic similarity between any two words is difficult task. In this paper a new approach is proposed to measure similarity between words. This approach is based on text snippets and page counts. These two measures are taken from the results of a search engine like Google. To achieve the aim of this paper, lexical patterns are extracted from text snippets and word co-occurrence measures are defined using page counts. The results of these two are combined. Moreover, we proposed algorithms such as pattern clustering and pattern extraction in order to find various relationships between any given two words. Support Vector Machines, a data mining technique, is used to optimize the results. The empirical results reveal that the proposed techniques are finding best results that can be compared with human ratings and accuracy in web mining activities.
منابع مشابه
A Web Search Engine-based Approach to Measure Semantic Similarity between Words
Measuring the semantic similarity between words is an important component in various tasks on the web such as relation extraction, community mining, document clustering, and automatic metadata extraction. Despite the usefulness of semantic similarity measures in these applications, accurately measuring semantic similarity between two words (or entities) remains a challenging task. We propose an...
متن کاملA Web Search Engine-Based Approach to Measure Semantic Similarity between Words
easuring the semantic similarity between words is an important component in various tasks on the web such as relation extraction, community mining, document clustering, and automatic metadata extraction. Despite the usefulness of semantic similarity measures in these applications, accurately measuring semantic similarity between two words (or entities) remains a challenging task. We propose an ...
متن کاملA Comparative Study of Machine Learning Approaches- SVM and LS-SVM using a Web Search Engine Based Application
Semantic similarity refers to the concept by which a set of documents or words within the documents are assigned a weight based on their meaning. The accurate measurement of such similarity plays important roles in Natural language Processing and Information Retrieval tasks such as Query Expansion and Word Sense Disambiguation. Page counts and snippets retrieved by the search engines help to me...
متن کاملAn integrated approach for measuring semantic similarity between words and sentences using web search engine
Semantic similarity measures play vital roles in Information Retrieval (IR) and Natural Language Processing (NLP). Despite the usefulness of semantic similarity measures in various applications, strongly measuring semantic similarity between two words remains a challenging task. Here, three semantic similarity measures have been proposed, that uses the information available on the web to measur...
متن کاملComputing Semantic Similarity Measure between Words Using Web Search Engine
Semantic Similarity measures between words plays an important role in information retrieval, natural language processing and in various tasks on the web. In this paper, we have proposed a Modified Pattern Extraction Algorithm to compute the supervised semantic similarity measure between the words by combining both page count method and web snippets method. Four association measures are used to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012